Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Xi Sun ${ }^{\text {a }}$ and Zhong-Lu You ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: yuxisun@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.075$
$w R$ factor $=0.163$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Ammonio-3-phenylpropanoic acid-monohydrogen sulfate-2-ammonio-3-phenylpropanoate (1/1/1)

The title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{HSO}_{4}{ }^{-} \cdot \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$, consists of a neutral 2-ammonio-3-phenylpropanoate zwitterionic molecule, a 2-ammonio-3-phenylpropanoic acid cation, and a hydrogen sulfate anion. All the O and N atoms in the compound contribute to hydrogen bonds, leading to the formation of sheets parallel to the $a b$ plane.

Comment

The title compound, (I) (Fig. 1), consists of a neutral 2-ammonio-3-phenylpropanoate zwitterionic molecule, a 2-ammonio-3-phenylpropanoic acid cation, and a hydrogen sulfate anion. The bond lengths and angles of the 2-ammonio-3-phenylpropanoate moiety are in normal ranges, similar to those observed previously (You et al., 2003; Liang et al., 2002). The dihedral angle between the C1-C6 and C10-C15 phenyl rings is $87.5(7)^{\circ}$, while that formed by the $\mathrm{O} 1 / \mathrm{C} 9 / \mathrm{O} 2$ carboxylate group and the C1-C6 phenyl ring is 138.9 (7) ${ }^{\circ}$. In the 2 -ammonio-3-phenylpropanoic acid cation, the torsion angles $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ and $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$ are 90.6 (6) and $-150.6(6)^{\circ}$, respectively. In the neutral 2 -ammonio-3phenylpropanoate molecule, the torsion angles $\mathrm{C} 10-\mathrm{C} 16-$ $\mathrm{C} 17-\mathrm{C} 18$ and $\mathrm{C} 10-\mathrm{C} 16-\mathrm{C} 17-\mathrm{N} 2$ are 160.5 (6) and $-79.0(6)^{\circ}$, respectively. Atom C8 deviates from the plane of the C1-C6 phenyl ring by 1.243 (7) \AA, whereas atom C17 deviates from the plane of the $\mathrm{C} 10-\mathrm{C} 15$ phenyl ring by 1.289 (7) \AA.

(I)

The hydrogen sulfate anion is linked to the neutral 2 -ammonio-3-phenylpropanoate molecule (Fig. 1) via an O6H6 . ${ }^{\mathrm{O}} 3^{\mathrm{i}}$ hydrogen bond (see Table 1 and Fig. 2).

In the crystal structure, the three moieties are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1 and Fig. 2), and are stacked along the b axis.

Experimental

2-Amino-3-phenylpropane-1,1-diol and sulfuric acid were available commercially and were used without further purification. A mixture

Received 19 July 2004 Accepted 27 July 2004 Online 31 July 2004
of 2-amino-3-phenylpropane-1,1-diol ($0.1 \mathrm{mmol}, \quad 16.5 \mathrm{mg}$) and sulfuric acid ($0.1 \mathrm{mmol}, 10.0 \mathrm{mg}$) was dissolved in distilled water $(12 \mathrm{ml})$. The mixture was stirred for 30 min at room temperature to give a clear colorless solution. After allowing the resulting solution to stand in air for 8 d , colorless block-like crystals of (I) had formed at the bottom of the vessel on slow evaporation of the water (yield 71.2%). Analysis found: C $50.3, \mathrm{H} 5.7$, N 6.4%; calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C} 50.5$, H 5.6, N 6.5%.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{HSO}_{4}{ }^{-} \cdot \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$
$M_{r}=428.45$
Monoclinic, $P 2_{1}$
$a=13.439$ (3) A
$b=4.878$ (3) \AA
$c=15.483(3) \AA$
$\beta=97.05$ (3) ${ }^{\circ}$
$V=1007.4(4) \AA^{3}$
$Z=2$
$D_{x}=1.412 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 512
reflections
$\theta=2.7-16.4^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless $0.27 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.946, T_{\text {max }}=0.963$
5540 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.075$
$w R\left(F^{2}\right)=0.163$
$S=0.95$
3478 reflections
268 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
The asymmetric unit of the title compound, (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
Crystal packing of (I), viewed along the b axis. $\mathrm{O} \cdots \mathrm{O}$ contacts are shown as dashed lines. H atoms have been omitted for clarity.

The authors thank Qufu Normal University for a research grant.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Liang, H., Yu, Q. \& Hu, R.-X. (2002). Transition Met. Chem. 27, 454-457. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
You, Z.-L., Zhu, H.-L., Liu, W.-S. \& Tan, M.-Y. (2003). Acta Cryst. E59, o1920o1922.

